Ubiquitin and Protein Turnover in Synapse Function
نویسندگان
چکیده
Enduring modification of synapses is central to long-lasting neural circuit plasticity. Such adaptations include rapid posttranslational modification of existing synaptic proteins over periods of minutes and persisting changes in the abundance of synaptic proteins over hours to days. Recently, ubiquitination and protein degradation have emerged as additional mechanisms for modifying the function and molecular composition of synapses. These recent findings raise intriguing questions as to how enduring changes at synapses are accomplished in the face of robust, ongoing molecular turnover.
منابع مشابه
Ubiquitin and Protein Degradation in Synapse Function
The remodeling of synapses is a fundamental mechanism for information storage and processing in the brain. During brain development, and in response to learningrelated activity, synapses undergo remarkable structural changes, including growth, shrinkage, and elimination. Such structural plasticity provides a physical basis for enduring changes in neural circuits that are mediated by alterations...
متن کاملSynaptic requiem: a duet for Piccolo and Bassoon.
Neurotransmission in the brain critically depends on the maintenance of synapses as well as on regulated synaptic protein turnover. How synaptic proteostasis is held in check has remained largely enigmatic. A new paper in The EMBO Journal reports that the active zone proteins Piccolo and Bassoon put a brake on presynaptic protein turnover by restraining the activity of the E3 ubiquitin ligase S...
متن کاملHECT-type E3 ubiquitin ligases in nerve cell development and synapse physiology.
The development of neurons is precisely controlled. Nerve cells are born from progenitor cells, migrate to their future target sites, extend dendrites and an axon to form synapses, and thus establish neural networks. All these processes are governed by multiple intracellular signaling cascades, among which ubiquitylation has emerged as a potent regulatory principle that determines protein funct...
متن کاملThe Role of Deubiquitinating Enzymes in Synaptic Function and Nervous System Diseases
Posttranslational modification of proteins by ubiquitin has emerged as a critical regulator of synapse development and function. Ubiquitination is a reversible modification mediated by the concerted action of a large number of specific ubiquitin ligases and ubiquitin proteases, called deubiquitinating enzymes (DUBs). The balance of activity of these enzymes determines the localization, function...
متن کاملRegulation of synaptic growth and maturation by a synapse-associated E3 ubiquitin ligase at the neuromuscular junction
The ubiquitin-proteasome pathway has been implicated in synaptic development and plasticity. However, mechanisms by which ubiquitination contributes to precise and dynamic control of synaptic development and plasticity are poorly understood. We have identified a PDZ domain containing RING finger 3 (PDZRN3) as a synapse-associated E3 ubiquitin ligase and have demonstrated that it regulates the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 47 شماره
صفحات -
تاریخ انتشار 2005